

# **FCC Test Report**

Report No.: AGC07849161002FE03

FCC ID : 2AKARRU101R

**APPLICATION PURPOSE**: Original Equipment

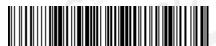
**PRODUCT DESIGNATION**: UHF Reader

BRAND NAME : ZK RFID

**MODEL NAME** : RU101R-W-F-V1.0 ,UHF1-10F,UHF2-10F

**CLIENT**: Guangdong ZK Radio Electronic Tech Co., Ltd

**DATE OF ISSUE** : Nov. 02, 2016


**STANDARD(S)** : FCC Part 15 Rules

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

## **CAUTION:**

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.



The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E



Page 2 of 41

# **Report Revise Record**

| Report Version | Revise Time | Issued Date   | Valid Version | Notes           |
|----------------|-------------|---------------|---------------|-----------------|
| V1.0           | 1           | Nov. 02, 2016 | Valid         | Original Report |

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.



# TABLE OF CONTENTS

| 1. VERIFICATION OF CONFORMITY                         |    |
|-------------------------------------------------------|----|
| 2. GENERAL INFORMATION                                |    |
| 2.1. PRODUCT DESCRIPTION                              |    |
| 2.2. TABLE OF CARRIER FREQUENCYS                      | 6  |
| 2.3. RECEIVER INPUT BANDWIDTH                         | 7  |
| 2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE       | 7  |
| 2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR |    |
| 2.6. RELATED SUBMITTAL(S) / GRANT (S)                 | 7  |
| 2.7. TEST METHODOLOGY                                 | 7  |
| 2.8. SPECIAL ACCESSORIES                              | 7  |
| 2.9. EQUIPMENT MODIFICATIONS                          |    |
| 3. MEASUREMENT UNCERTAINTY                            | 8  |
| 4. DESCRIPTION OF TEST MODES                          | 8  |
| 5. SYSTEM TEST CONFIGURATION                          | 9  |
| 5.1. CONFIGURATION OF EUT SYSTEM                      |    |
| 5.2. EQUIPMENT USED IN EUT SYSTEM                     |    |
| 5.3. SUMMARY OF TEST RESULTS                          | 9  |
| 6. TEST FACILITY                                      | 10 |
| 7. PEAK OUTPUT POWER                                  | 11 |
| 7.1. MEASUREMENT PROCEDURE                            | 11 |
| 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)     | 11 |
| 7.3. LIMITS AND MEASUREMENT RESULT                    | 12 |
| 8. 20DB BANDWIDTH                                     | 14 |
| 8.1. MEASUREMENT PROCEDURE                            | 14 |
| 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)     | 14 |
| 8.3. LIMITS AND MEASUREMENT RESULTS                   | 14 |
| 9. CONDUCTED SPURIOUS EMISSION                        | 16 |
| 9.1. MEASUREMENT PROCEDURE                            | 16 |
| 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)     | 16 |
| 9.3. MEASUREMENT EQUIPMENT USED                       |    |
| 9.4. LIMITS AND MEASUREMENT RESULT                    | 16 |
| 10. RADIATED EMISSION                                 | 21 |
| 10.1. MEASUREMENT PROCEDURE                           |    |
| 10.2. TEST SETUP                                      | 23 |
| 10.3 LIMITS AND MEASUREMENT RESULT                    | 24 |

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com. AGC 8



Report No.: AGC07849161002FE03 Page 4 of 41

| 10.4. TEST RESULT                                 | 24 |
|---------------------------------------------------|----|
| 11. NUMBER OF HOPPING FREQUENCY                   | 30 |
| 11.1. MEASUREMENT PROCEDURE                       | 30 |
| 11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 30 |
| 11.3. MEASUREMENT EQUIPMENT USED                  | 30 |
| 11.4. LIMITS AND MEASUREMENT RESULT               | 30 |
| 12. TIME OF OCCUPANCY (DWELL TIME)                | 31 |
| 12.1. MEASUREMENT PROCEDURE                       | 31 |
| 12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 31 |
| 12.3. MEASUREMENT EQUIPMENT USED                  | 31 |
| 12.4. LIMITS AND MEASUREMENT RESULT               | 31 |
| 13. FREQUENCY SEPARATION                          |    |
| 13.1. MEASUREMENT PROCEDURE                       | 35 |
| 13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) | 35 |
| 13.3. MEASUREMENT EQUIPMENT USED                  | 35 |
| 13.4. LIMITS AND MEASUREMENT RESULT               | 35 |
| APPENDIX A: PHOTOGRAPHS OF TEST SETUP             | 36 |
| ADDENDIV D. DUOTOCD ADUS OF SUT                   | 37 |

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cett.com.



Report No.: AGC07849161002FE03 Page 5 of 41

1. VERIFICATION OF CONFORMITY

| Applicant                | Guangdong ZK Radio Electronic Tech Co., Ltd                                                              |  |  |  |
|--------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| Address                  | 1004 Room, 3 block B, Tian-an-Yun-Gu, Ban Tian Longgang, Shenzhen, China                                 |  |  |  |
| Manufacturer             | Guangdong ZK Radio Electronic Tech Co., Ltd                                                              |  |  |  |
| Address                  | 1004 Room, 3 block B, Tian-an-Yun-Gu, Ban Tian Longgang, Shenzhen, China                                 |  |  |  |
| Product Designation      | UHF Reader                                                                                               |  |  |  |
| Brand Name               | ZK RFID                                                                                                  |  |  |  |
| Test Model               | RU101R-W-F-V1.0                                                                                          |  |  |  |
| Series Model             | UHF1-10F,UHF2-10F                                                                                        |  |  |  |
| Model Difference         | UHF1-10F and UHF2-10F are same as RU101R-W-F-V1.0 except the antenna appearance and encryption software. |  |  |  |
| Date of test             | Oct. 25, 2016 to Oct.26, 2016                                                                            |  |  |  |
| Deviation                | None                                                                                                     |  |  |  |
| Condition of Test Sample | Normal                                                                                                   |  |  |  |
| Test Result              | Pass                                                                                                     |  |  |  |
| Report Template          | AGCRT-US-BR/RF (2013-03-01)                                                                              |  |  |  |

## We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

> Max Zham Tested by Max Zhang(Zhang Yi) Nov.02, 2016 Bore sie Reviewed by Bart Xie(Xie Xiaobin) Nov.02, 2016 Approved by Solger Zhang(Zhang Hongyi) Nov.02, 2016 **Authorized Officer**

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Tel: +86-755 2908 1955

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

@ 400 089 2118



Page 6 of 41

@ 400 089 2118

### 2. GENERAL INFORMATION

# 2.1. PRODUCT DESCRIPTION

The EUT is UHF Reader designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

| Operation Frequency | 902.5 MHz to 927.5MHz |
|---------------------|-----------------------|
| RF Output Power     | 16.317dBm(Max)        |
| Modulation          | GFSK                  |
| Number of channels  | 51                    |
| Hardware Version    | MI610_V1.1            |
| Software Version    | UR011 20160820_V1.2   |
| Antenna Designation | Integrated Antenna    |
| Antenna Gain        | 12dBi                 |
| Power Supply        | DC 12V                |

Note: The USB port is only for updating the configuration file.

# 2.2. TABLE OF CARRIER FREQUENCYS

| Frequency Band            | Channel Number | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | 1 4 5          | 902.5 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The Target of the Comment | 2              | 903.0 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 902~928MHZ                |                | THE THE PARTY OF T |
| JO.                       | 50             | 927.0 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T. B. T. T.               | 51             | 927.5 MHZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Note: The channel spacing is 0.5MHz.

Attestation of Global Compliance

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be



Page 7 of 41

### 2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 200kHz.

### 2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 51 hopping sequence in data mode: 21,23,33,25,27,31,07,09,13,11,15,02,06,01,03,05,04,08,10,12,14,16,17,18,19,20, 24,26,27,28,29,30,32,34,35,36,37,38,40,41,42,43,45,44,47,46,48,49,50,51

### 2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter.

### 2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for FCC ID: 2AKARRU101R filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

### 2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

### 2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.



Page 8 of 41

### 3. MEASUREMENT UNCERTAINTY

Conducted measurement: +/- 3.18dB Radiated measurement: +/- 3.91dB

# 4. DESCRIPTION OF TEST MODES

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO. |    | TEST MODE DESCRIPTION |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------------------|-----------|
| State of the latest of the lat | 1   | 11 | Low channel TX        | <b>基</b>  |
| litte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2   |    | Middle channel TX     | EC Bereit |
| ST TO THE REAL PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3   | 不怕 | High channel TX       | 10        |

### Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gert.com.



Page 9 of 41

# 5. SYSTEM TEST CONFIGURATION

### **5.1. CONFIGURATION OF EUT SYSTEM**

Configure 1:



# 5.2. EQUIPMENT USED IN EUT SYSTEM

| Item | m Equipment Mfr/Brand M |         | Model/Type No.  | Remark |
|------|-------------------------|---------|-----------------|--------|
| 1    | UHF READER              | ZK RFID | RU101R-W-F-V1.0 | EUT    |
| 2    | PC                      | Sony    | E1412AYCW       | A.E    |

## 5.3. SUMMARY OF TEST RESULTS

| FCC RULES | DESCRIPTION OF TEST         | RESULT    |
|-----------|-----------------------------|-----------|
| §15.247   | Peak Output Power           | Compliant |
| §15.247   | 20 dB Bandwidth             | Compliant |
| §15.247   | Spurious Emission           | Compliant |
| §15.209   | Radiated Emission           | Compliant |
| §15.207   | Conduction Emission         | N/A       |
| §15.247   | Number of Hopping Frequency | Compliant |
| §15.247   | Time of Occupancy           | Compliant |
| §15.247   | Frequency Separation        | Compliant |

Note: N/A means not applicable

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.



Page 10 of 41

@ 400 089 2118

# 6. TEST FACILITY

| Site Dongguan Precise Testing Service Co., Ltd. |                                                                                                        |  |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Location                                        | Building D, Baoding Technology Park, Guangming Road2, Dongcheng District, Dongguan, Guangdong, China.  |  |
| FCC Registration No.                            | 371540                                                                                                 |  |
| Description                                     | The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.4:2014. |  |

# ALL TEST EQUIPMENT LIST

|                                        | Radiated I         | Emission Test   | Site          |                     |                    |
|----------------------------------------|--------------------|-----------------|---------------|---------------------|--------------------|
| Name of Equipment                      | Manufacturer       | Model<br>Number | Serial Number | Last<br>Calibration | Due<br>Calibration |
| EMI Test Receiver                      | Rohde &<br>Schwarz | ESCI            | 101417        | July 3, 2016        | July 2, 2017       |
| Trilog Broadband Antenna<br>(25M-1GHz) | SCHWARZBECK        | VULB9160        | 9160-3355     | July 3, 2016        | July 2, 2017       |
| Signal Amplifier                       | SCHWARZBECK        | BBV 9475        | 9745-0013     | July 3, 2016        | July 2, 2017       |
| RF Cable                               | SCHWARZBECK        | AK9515E         | 96221         | July 3, 2016        | July 2, 2017       |
| 3m Anechoic Chamber                    | CHENGYU            | 966             | PTS-001       | June 3, 2016        | June 2, 2017       |
| MULTI-DEVICE Positioning<br>Controller | Max-Full           | MF-7802         | MF780208339   | N/A                 | N/A                |
| Active loop antenna<br>(9K-30MHz)      | Schwarzbeck        | FMZB1519        | 1519-038      | June 3, 2016        | June 2, 2017       |
| Spectrum analyzer                      | Agilent            | E4407B          | MY46185649    | June 3, 2016        | June 2, 2017       |
| Power Sensor                           | Agilent            | U2021XA         | MY55050474    | June 3, 2016        | June 2, 2017       |
| Horn Antenna (1G-18GHz)                | SCHWARZBECK        | BBHA9120D       | 9120D-1246    | June 3, 2016        | June 2, 2017       |
| Horn Ant (18G-40GHz)                   | Schwarzbeck        | BBHA 9170       | 9170-181      | June 3, 2016        | June 2, 2017       |

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com. AGC 8

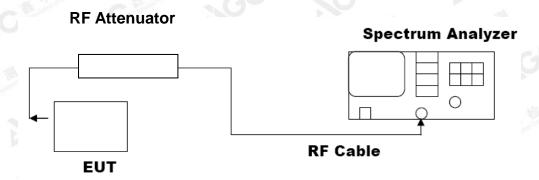
Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China



Page 11 of 41

### 7. PEAK OUTPUT POWER

### 7.1. MEASUREMENT PROCEDURE


For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW ≥RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.

Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

# 7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

# **PEAK POWER TEST SETUP**



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.



Page 12 of 41

### 7.3. LIMITS AND MEASUREMENT RESULT

| PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION  Frequency (MHz) Peak Power (dBm) Pass or Fail |        |    |      |
|----------------------------------------------------------------------------------------------------------|--------|----|------|
|                                                                                                          |        |    |      |
| 915.0                                                                                                    | 15.172 | 18 | Pass |
| 927.5                                                                                                    | 16.317 | 18 | Pass |

### Low Channel



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

Tel: +86-755 2908 1955 Fax: +86-755 2600 8484

**IGC** 



### Middle Channel



## High Channel



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc-cert.com.

Attestation of Global Compliance

Report No.: AGC07849161002FE03 Page 14 of 41

### 8. 20DB BANDWIDTH

# **8.1. MEASUREMENT PROCEDURE**

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel
  The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video
  bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

## 8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 7.2.

### 8.3. LIMITS AND MEASUREMENT RESULTS

| -411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 700                 |                    |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|------|--|--|--|--|
| MEASU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REMENT RESULT FOR G | FSK MOUDULATION    |      |  |  |  |  |
| Applicable Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Measurement Result |      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Da             | Test Data (kHz)    |      |  |  |  |  |
| The state of the s | Low Channel         | 66.89              | PASS |  |  |  |  |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Middle Channel      | 66.35              | PASS |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | High Channel        | 67.12              | PASS |  |  |  |  |

### TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

No.16 F



### TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL



#### TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

No.16 E

GC



Page 16 of 41

### 9. CONDUCTED SPURIOUS EMISSION

# 9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
  - RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

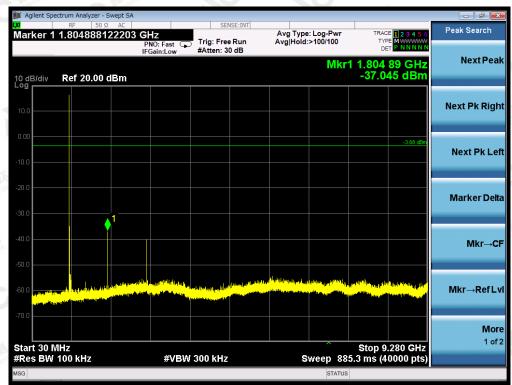
# 9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

The same as described in section 8.2

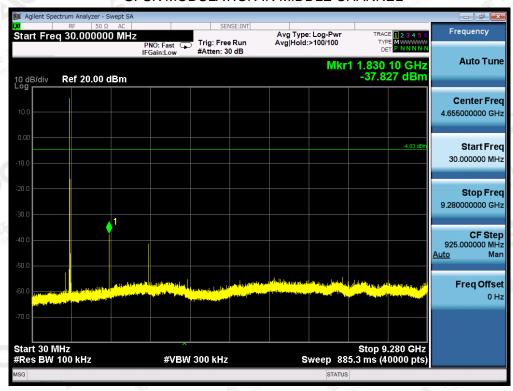
# 9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

### 9.4. LIMITS AND MEASUREMENT RESULT


| LIMITS AND MEASUREMENT RESULT                                                                                                                                                                                                                                                                                                                             |                                                                |          |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|--|--|--|--|--|
| Applicable Limite                                                                                                                                                                                                                                                                                                                                         | Measurement Result                                             |          |  |  |  |  |  |
| Applicable Limits                                                                                                                                                                                                                                                                                                                                         | Test Data                                                      | Criteria |  |  |  |  |  |
| In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency                                                                                                                                                                                                                   | At least -20dBc than the limit Specified on the BOTTOM Channel | PASS     |  |  |  |  |  |
| power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power.  In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a)) | At least -20dBc than the limit<br>Specified on the TOP Channel | PASS     |  |  |  |  |  |

The results showning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be




### TEST RESULT FOR ENTIRE FREQUENCY RANGE

GFSK MODULATION IN LOW CHANNEL



## GFSK MODULATION IN MIDDLE CHANNEL



The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance

IGC 8



### GFSK MODULATION IN HIGH CHANNEL

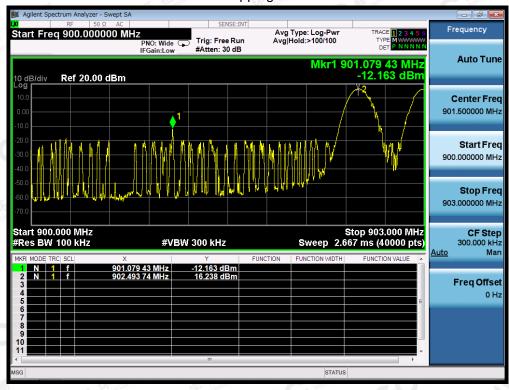


Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The GFSK modulation is the worst case and only those data recorded in the report.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance




# **TEST RESULT FOR BAND EDGE**

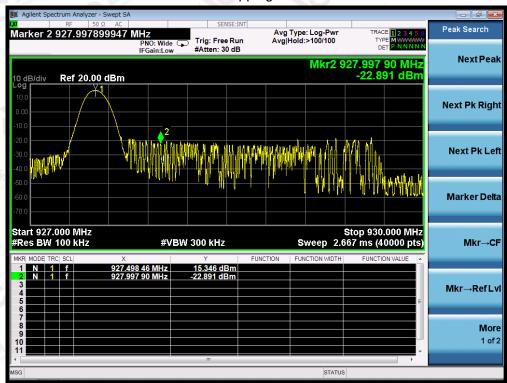
### **GFSK MODULATION IN LOW CHANNEL**

### Hopping off



### Hopping on




The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gent.com.

Attestation of Global Compliance


GC



# GFSK MODULATION IN HIGH CHANNEL Hopping off



### Hopping on



The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

Attestation of Global Compliance

GC 8



Page 21 of 41

### 10. RADIATED EMISSION

### 10.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away
- Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 0. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High - Low scan is not required in this case.

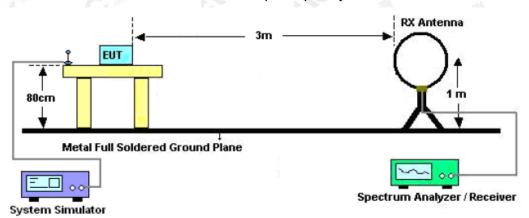
The results showning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Attp://www.agc-cert.com.



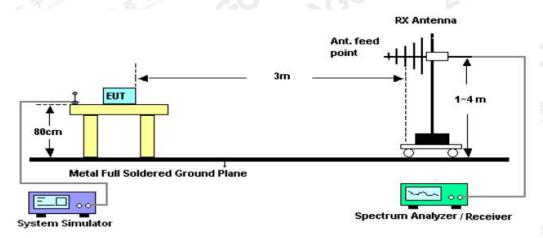
Page 22 of 41

The following table is the setting of spectrum analyzer and receiver.

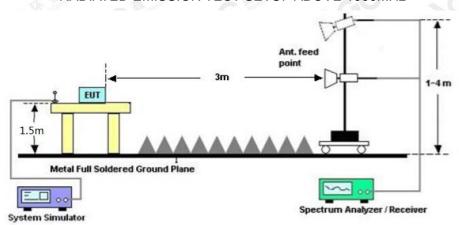
|                      | Spectrum Parameter    | Setting                                                   |  |  |
|----------------------|-----------------------|-----------------------------------------------------------|--|--|
|                      | Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP                               |  |  |
| 也                    | Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP                               |  |  |
| F 30 of Children Con | Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP                            |  |  |
| -111                 | Start ~Stop Frequency | 1GHz~26.5GHz<br>1MHz/1MHz for Peak, 1MHz/10Hz for Average |  |  |


| Receiver Parameter    | Setting                        |
|-----------------------|--------------------------------|
| Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP    |
| Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP    |
| Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP |

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gert.com.




### 10.2. TEST SETUP


### Radiated Emission Test-Setup Frequency Below 30MHz



# RADIATED EMISSION TEST SETUP 30MHz-1000MHz



# RADIATED EMISSION TEST SETUP ABOVE 1000MHz



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.



Page 24 of 41

# 10.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

| Frequencies<br>(MHz) | Field Strength (micorvolts/meter) | Measurement Distance (meters) |
|----------------------|-----------------------------------|-------------------------------|
| 0.009~0.490          | 2400/F(KHz)                       | 300                           |
| 0.490~1.705          | 24000/F(KHz)                      | 30                            |
| 1.705~30.0           | 30                                | 30                            |
| 30~88                | 100                               | 3 20                          |
| 88~216               | 150                               | 3                             |
| 216~960              | 200                               | 3 1                           |
| Above 960            | 500                               | 3                             |

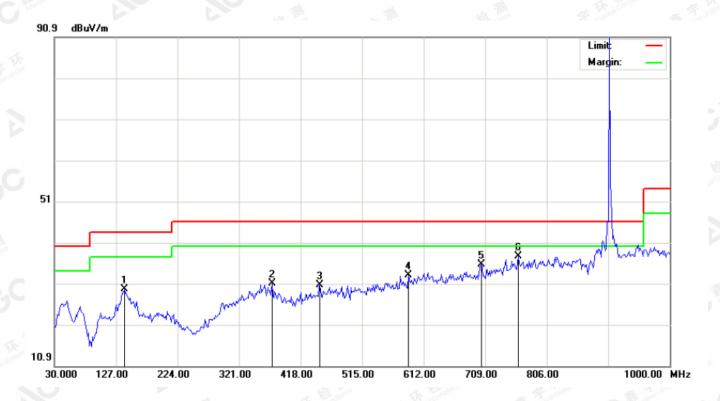
Note: All modes were tested For restricted band radiated emission.

the test records reported below are the worst result compared to other modes.

### 10.4. TEST RESULT

### **RADIATED EMISSION BELOW 30MHZ**

No emission found between lowest internal used/generated frequencies to 30MHz


The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.

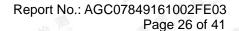


Page 25 of 41

# **RADIATED EMISSION BELOW 1GHZ**

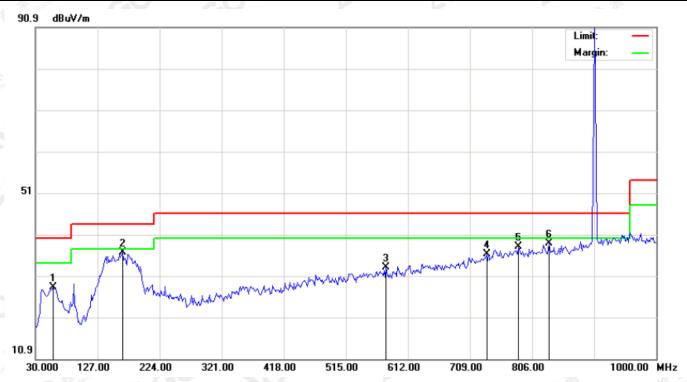
| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
|-------------|------------|-------------------|-----------------|
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 1     | Antenna           | Horizontal      |




| No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height |        | Comment |
|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|--------|---------|
|     | -  | MHz      | dBuV    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree |         |
| 1   |    | 139.9333 | 14.43   | 15.17  | 29.60       | 43.50  | -13.90 | peak     |                   |        |         |
| 2   |    | 372.7333 | 12.11   | 18.89  | 31.00       | 46.00  | -15.00 | peak     |                   |        |         |
| 3   |    | 448.7167 | 10.00   | 20.55  | 30.55       | 46.00  | -15.45 | peak     |                   |        |         |
| 4   |    | 587.7500 | 9.61    | 23.42  | 33.03       | 46.00  | -12.97 | peak     |                   |        |         |
| 5   |    | 702.5333 | 10.43   | 25.26  | 35.69       | 46.00  | -10.31 | peak     | ·                 |        |         |
| 6   | *  | 760.7333 | 10.77   | 26.78  | 37.55       | 46.00  | -8.45  | peak     |                   |        |         |

**RESULT: PASS** 

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.


No.16 E

AGC 8





| 1111        |            |                   |                 |
|-------------|------------|-------------------|-----------------|
| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 1     | Antenna           | Vertical        |



|        | No. | Mk | Freq.    | Reading | Factor | Measurement | Limit  | Over   | Detector | Antenna<br>Height | Table<br>Degree | Comment |
|--------|-----|----|----------|---------|--------|-------------|--------|--------|----------|-------------------|-----------------|---------|
|        |     | -  | MHz      | dBuV    | dB/m   | dBuV/m      | dBuV/m | dB     |          | cm                | degree          |         |
|        | 1   |    | 57.4833  | 20.12   | 8.17   | 28.29       | 40.00  | -11.71 | peak     |                   |                 |         |
| TORON. | 2   | *  | 165.8000 | 21.57   | 14.96  | 36.53       | 43.50  | -6.97  | peak     |                   |                 |         |
|        | 3   |    | 578.0500 | 10.48   | 22.62  | 33.10       | 46.00  | -12.90 | peak     |                   |                 |         |
|        | 4   |    | 734.8667 | 9.99    | 26.19  | 36.18       | 46.00  | -9.82  | peak     |                   |                 |         |
|        | 5   |    | 784.9833 | 10.84   | 27.11  | 37.95       | 46.00  | -8.05  | peak     |                   |                 |         |
|        | 6   |    | 831.8667 | 11.51   | 27.31  | 38.82       | 46.00  | -7.18  | peak     |                   |                 |         |

### **RESULT: PASS**

### Note:

- 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.
- 2. The "Factor" value can be calculated automatically by software of measurement system.
- 3. All test modes had been pre-tested. The mode 1 is the worst case and recorded in the report.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be



Page 27 of 41

400 089 2118

### **RADIATED EMISSION ABOVE 1GHZ**

| 71111       |            |                   |                 |
|-------------|------------|-------------------|-----------------|
| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 1     | Antenna           | Horizontal      |

| Meter Reading | Factor                            | Emission Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limits                                                                                                                         | Margin                                                                                                                                                           | Value Type                                                                                                                                                                                                    |
|---------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dBµV)        | (dB) (dBµV/m)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (dBµV/m)                                                                                                                       | (dB)                                                                                                                                                             | value Type                                                                                                                                                                                                    |
| 71.52         | -12.18                            | 59.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74                                                                                                                             | -14.66                                                                                                                                                           | peak                                                                                                                                                                                                          |
| 62.53         | -12.18                            | 50.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54                                                                                                                             | -3.65                                                                                                                                                            | AVG                                                                                                                                                                                                           |
| 60.35         | -6.74                             | 53.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74                                                                                                                             | -20.39                                                                                                                                                           | peak                                                                                                                                                                                                          |
| 51.63         | -6.74                             | 44.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54                                                                                                                             | -9.11                                                                                                                                                            | AVG                                                                                                                                                                                                           |
| All Sta       | 不 校 河                             | 14 TO 10 TO |                                                                                                                                |                                                                                                                                                                  | 0                                                                                                                                                                                                             |
| · 对           | F 1 Global Co.                    | - 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20"                                                                                                                            |                                                                                                                                                                  | 7                                                                                                                                                                                                             |
|               | (dBµV)<br>71.52<br>62.53<br>60.35 | (dBμV) (dB)<br>71.52 -12.18<br>62.53 -12.18<br>60.35 -6.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (dBμV)     (dB)     (dBμV/m)       71.52     -12.18     59.34       62.53     -12.18     50.35       60.35     -6.74     53.61 | (dBμV)     (dB)     (dBμV/m)     (dBμV/m)       71.52     -12.18     59.34     74       62.53     -12.18     50.35     54       60.35     -6.74     53.61     74 | (dBμV)     (dB)     (dBμV/m)     (dBμV/m)     (dBμV/m)       71.52     -12.18     59.34     74     -14.66       62.53     -12.18     50.35     54     -3.65       60.35     -6.74     53.61     74     -20.39 |

| •        | UHF READER | Model Name        | RU101R-W-F-V1.0 | 9 |
|----------|------------|-------------------|-----------------|---|
| nerature | 25°C       | Relative Humidity | 55 4%           |   |

**Temperature Pressure** 960hPa **Test Voltage** Normal Voltage **Test Mode** Mode 1 **Antenna** Vertical

| All and the second |                  | - 19         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | - all      |
|--------------------|------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
| Frequency          | Meter Reading    | Factor       | Emission Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin     | Value Type |
| (MHz)              | (dBµV)           | (dB)         | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dB)       | value Type |
| 1805.014           | 69.47            | -12.18       | 57.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -16.71     | peak       |
| 1805.014           | 60.21            | -12.18       | 48.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5.97      | AVG        |
| 2707.021           | 59.33            | -6.74        | 52.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -21.41     | peak       |
| 2707.021           | 50.75            | -6.74        | 44.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -9.99      | AVG        |
| 70                 |                  | all          | 1000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56 to 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9<br>- Es. | Styles     |
| Remark:            | 极                | (P-          | The state of the s | <b>是</b> 等。(chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0         |            |
| actor = Ante       | enna Factor + Ca | ble Loss – P | re-amplifier.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The state of the s | 0          |            |

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-cert.com.

**EUT** 



Report No.: AGC07849161002FE03 Page 28 of 41

| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
|-------------|------------|-------------------|-----------------|
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 2     | Antenna           | Horizontal      |

| Meter Reading    | Factor                                     | Emission Level                                                | Limits                                                                                                                         | Margin                                                                                                                                                                                                  | Value Type                                                                                                                                                                                                                                                     |
|------------------|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (dBµV)           | (dB)                                       | (dBµV/m)                                                      | (dBµV/m)                                                                                                                       | (dB)                                                                                                                                                                                                    | value Type                                                                                                                                                                                                                                                     |
| 70.85            | -12.04                                     | 58.81                                                         | 74                                                                                                                             | -15.19                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                           |
| 61.42            | -12.04                                     | 49.38                                                         | 54                                                                                                                             | -4.62                                                                                                                                                                                                   | AVG                                                                                                                                                                                                                                                            |
| 60.14            | -6.72                                      | 53.42                                                         | 74                                                                                                                             | -20.58                                                                                                                                                                                                  | peak                                                                                                                                                                                                                                                           |
| 51.34            | -6.72                                      | 44.62                                                         | 54                                                                                                                             | -9.38                                                                                                                                                                                                   | AVG                                                                                                                                                                                                                                                            |
|                  |                                            |                                                               | -all                                                                                                                           | litte                                                                                                                                                                                                   | - Tr                                                                                                                                                                                                                                                           |
|                  |                                            | - 18                                                          | L march                                                                                                                        | Th. 182                                                                                                                                                                                                 | The sales of Con-                                                                                                                                                                                                                                              |
| Little .         | 100                                        | 2/ 3/ miles                                                   | # F                                                                                                                            | of Globia                                                                                                                                                                                               | C                                                                                                                                                                                                                                                              |
| enna Factor + Ca | ble Loss – I                               | Pre-amplifier.                                                | C 31100                                                                                                                        | 10                                                                                                                                                                                                      | ,                                                                                                                                                                                                                                                              |
|                  | (dBµV)<br>70.85<br>61.42<br>60.14<br>51.34 | (dBµV) (dB) 70.85 -12.04 61.42 -12.04 60.14 -6.72 51.34 -6.72 | (dBμV)     (dB)     (dBμV/m)       70.85     -12.04     58.81       61.42     -12.04     49.38       60.14     -6.72     53.42 | (dBμV)     (dB)     (dBμV/m)     (dBμV/m)       70.85     -12.04     58.81     74       61.42     -12.04     49.38     54       60.14     -6.72     53.42     74       51.34     -6.72     44.62     54 | (dBμV)     (dB)     (dBμV/m)     (dBμV/m)     (dBμV/m)       70.85     -12.04     58.81     74     -15.19       61.42     -12.04     49.38     54     -4.62       60.14     -6.72     53.42     74     -20.58       51.34     -6.72     44.62     54     -9.38 |

| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
|-------------|------------|-------------------|-----------------|
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 2     | Antenna           | Vertical        |

| .01        | Manaia                                                                          | Limita       | (Éusianian Laval | Гастан           | Matau Dandina      |           |
|------------|---------------------------------------------------------------------------------|--------------|------------------|------------------|--------------------|-----------|
| Value Type | Margin                                                                          | Limits       | Emission Level   | Factor           | Meter Reading      | Frequency |
| value Type | (dB)                                                                            | (dBµV/m)     | (dBµV/m)         | (dB)             | (dBµV)             | (MHz)     |
| peak       | -16.89                                                                          | 74           | 57.11            | -12.04           | 69.15              | 1830.013  |
| AVG        | -5.71                                                                           | 54           | 48.29            | -12.04           | 60.33              | 1830.013  |
| peak       | -21.98                                                                          | 74           | 52.02            | -6.72            | 58.74              | 2745.018  |
| AVG        | -11.06                                                                          | 54           | 42.94            | -6.72            | 49.66              | 2745.018  |
| od Globa   | ,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>,0<br>, | ~ 恒          | May Alle         | A.A.             |                    |           |
|            |                                                                                 | The state of | The Committee    | Man and a second | N/S                | - 1       |
|            | -                                                                               | B            | E 77.00          | -                | No. of the Control | emark:    |
| _          | CC.                                                                             |              | Pre-amplifier    | hle Loss — F     | nna Factor + Ca    | emark:    |

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.

AGC 8



Report No.: AGC07849161002FE03 Page 29 of 41

| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
|-------------|------------|-------------------|-----------------|
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 3     | Antenna           | Horizontal      |

| Frequency    | Meter Reading    | Factor        | Emission Level | Limits   | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Value Type          |
|--------------|------------------|---------------|----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| (MHz)        | (dBµV)           | (dB)          | (dBµV/m)       | (dBµV/m) | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | value Type          |
| 1855.012     | 71.74            | -11.96        | 59.78          | 74       | -14.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | peak                |
| 1855.012     | 62.85            | -11.96        | 50.89          | 54       | -3.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG                 |
| 2782.516     | 63.44            | -6.68         | 56.76          | 74       | -17.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | peak                |
| 2782.516     | 54.37            | -6.68         | 47.69          | 54       | -6.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG                 |
| Attestor     |                  |               |                | -011     | THE STATE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - Fr                |
|              |                  |               | 16             | L SOUTH  | The state of the s | The standard of the |
| Remark:      | 100              | THE SA        | The state of   | # F      | d Getain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C                   |
| actor = Ante | enna Factor + Ca | able Loss - I | Pre-amplifier. | -        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |

| EUT         | UHF READER | Model Name        | RU101R-W-F-V1.0 |
|-------------|------------|-------------------|-----------------|
| Temperature | 25°C       | Relative Humidity | 55.4%           |
| Pressure    | 960hPa     | Test Voltage      | Normal Voltage  |
| Test Mode   | Mode 3     | Antenna           | Vertical        |

| Frequency       | Meter Reading    | Factor       | Emission Level | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Margin | \/alua Typa   |
|-----------------|------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|
| (MHz)           | (dBµV)           | (dB)         | (dBµV/m)       | (dBµV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (dB)   | Value Type    |
| 1855.012        | 70.55            | -11.96       | 58.59          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -15.41 | peak          |
| 1855.012        | 62.02            | -11.96       | 50.06          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -3.94  | AVG           |
| 2782.516        | 61.47            | -6.68        | 54.79          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -19.21 | peak          |
| 2782.516        | 52.36            | -6.68        | 45.68          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -8.32  | AVG           |
| <del>GG F</del> |                  |              | -011           | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5      | 不能            |
| Remark:         | M                |              | TA TO          | The state of the s |        | align of sign |
| actor = Ante    | enna Factor + Ca | ble Loss – I | Pre-amplifier. | The state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70     | - CO          |

### **RESULT: PASS**

### Note:

Other emissions from 3G to 10 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been pre-tested. The GFSK modulation is the worst case and recorded in the report.

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be



Page 30 of 41

### 11. NUMBER OF HOPPING FREQUENCY

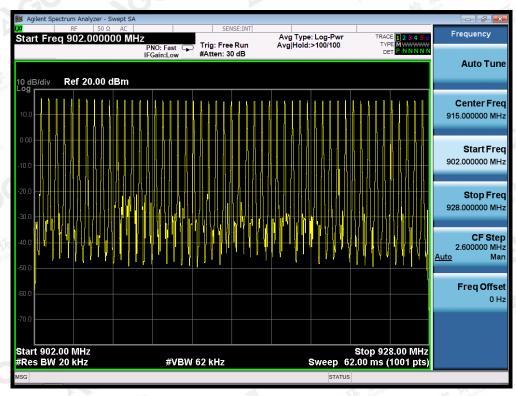
### 11.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 2. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3. VBW > RBW. Sweep: Auto. Detector function: Peak. Trace: Max hold.
- 4. Allow the trace to stabilize.

### 11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2


### 11.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

### 11.4. LIMITS AND MEASUREMENT RESULT

| TOTAL NO. OF    | LIMIT (NO. OF CH) | MEASUREMENT<br>(NO. OF CH) | RESULT |
|-----------------|-------------------|----------------------------|--------|
| HOPPING CHANNEL | >=50              | 51                         | PASS   |

### TEST PLOT FOR NO. OF TOTAL CHANNELS



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com.



Page 31 of 41

# 12. TIME OF OCCUPANCY (DWELL TIME)

### 12.1. MEASUREMENT PROCEDURE

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Zero span, centered on a hopping channel.
- 2. RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- 4. Detector function: Peak. Trace: Max hold.
- 5. Use the marker-delta function to determine the transmit time per hop.
- 6. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) x (period specified in the requirements / analyzer sweep time)

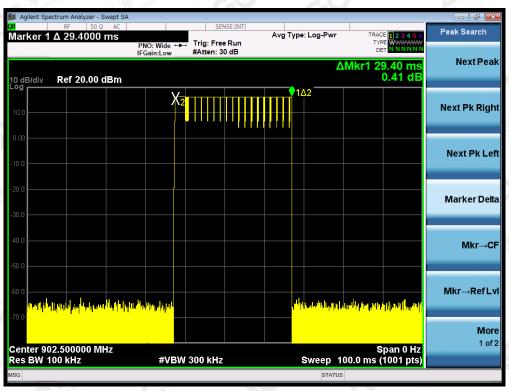
7. The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements.

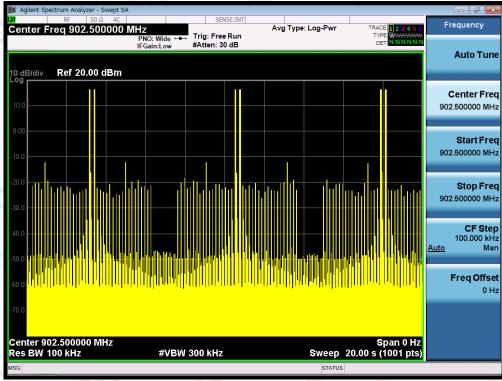
### 12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 8.2

### 12.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

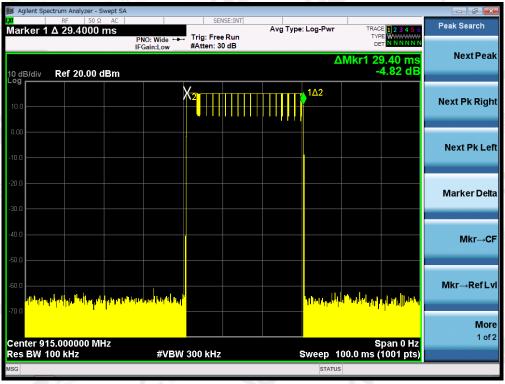

### 12.4. LIMITS AND MEASUREMENT RESULT

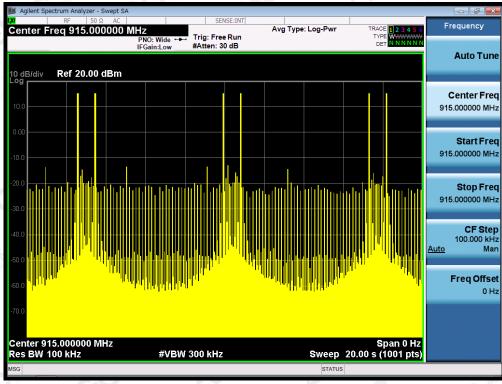

| Channel | Time of Pulse (ms) | Number of hops in the period specified in the requirements | Sweep Time<br>(ms) | Limit<br>(ms) |
|---------|--------------------|------------------------------------------------------------|--------------------|---------------|
| Low     | 29.40              | 6                                                          | 176.40             | 400           |
| Middle  | 29.40              | 6                                                          | 176.40             | 400           |
| High    | 29.50              | 6.69                                                       | 177.00             | 400           |

The results showning this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at Attp://www.agc-cert.com.



### TEST PLOT OF LOW CHANNEL

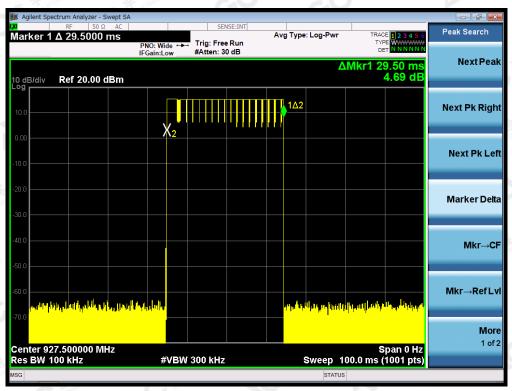


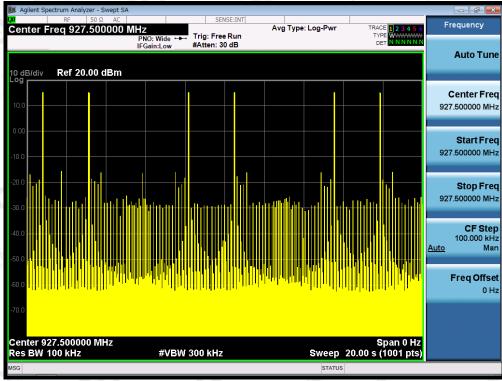




The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. No.16 E AGC 8



### **TEST PLOT OF MIDDLE CHANNEL**




The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. AGC 8



### **TEST PLOT OF HIGH CHANNEL**





The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. AGC 8

No.16 E E-mail: agc@agc-cert.com Tel: +86-755 2908 1955 Fax: +86-755 2600 8484

Add: 2F., Building 2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Baoan District, Shenzhen, Guangdong China

@ 400 089 2118

Page 35 of 41

### 13. FREQUENCY SEPARATION

### 13.1. MEASUREMENT PROCEDURE

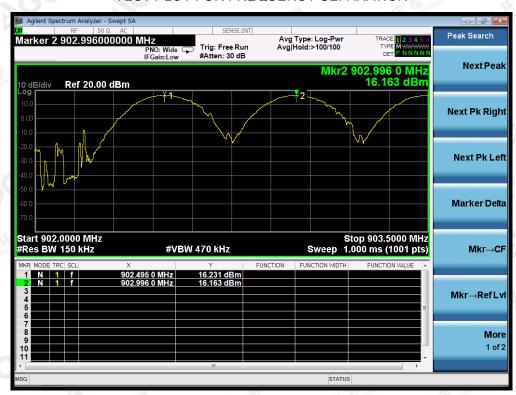
The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span: Wide enough to capture the peaks of two adjacent channels.
- 2. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3. Video (or average) bandwidth (VBW) ≥ RBW.
- 4. Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

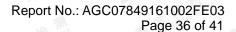
## 13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Same as described in section 6.2


### 13.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6.3

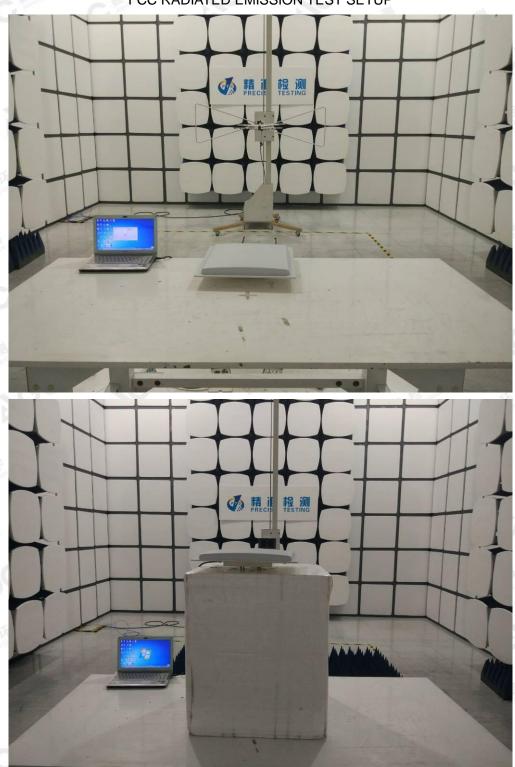
### 13.4. LIMITS AND MEASUREMENT RESULT


| CHANNEL   | CHANNEL SEPARATION | LIMIT                    | RESULT |  |
|-----------|--------------------|--------------------------|--------|--|
|           | KHz                | KHz                      | Page 1 |  |
| CH01-CH02 | 501                | >=25 KHz or 2/3 20 dB BW | Pass   |  |

### TEST PLOT FOR FREQUENCY SEPARATION



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gert.com.


N



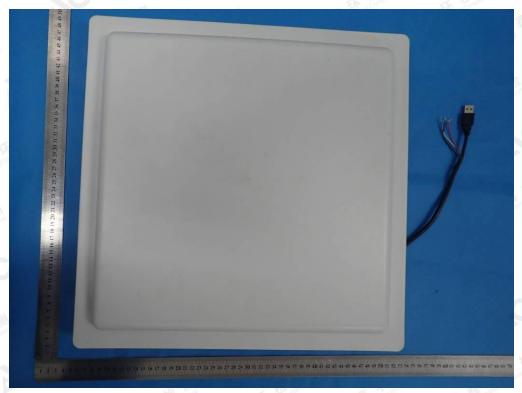


# **APPENDIX A: PHOTOGRAPHS OF TEST SETUP**

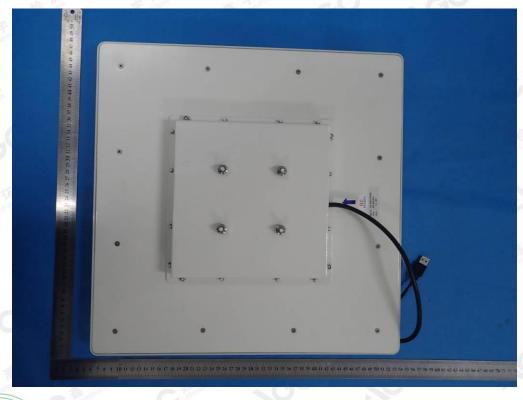
FCC RADIATED EMISSION TEST SETUP



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. GC 8


No.16 E




Page 37 of 41

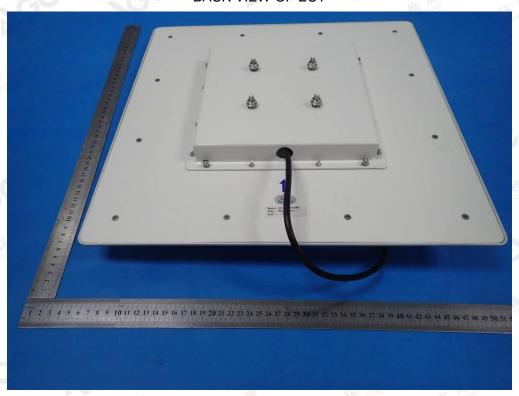
# APPENDIX B: PHOTOGRAPHS OF EUT RU101R-W-E-V1.0:

TOP VIEW OF EUT




**BOTTOM VIEW OF EUT** 

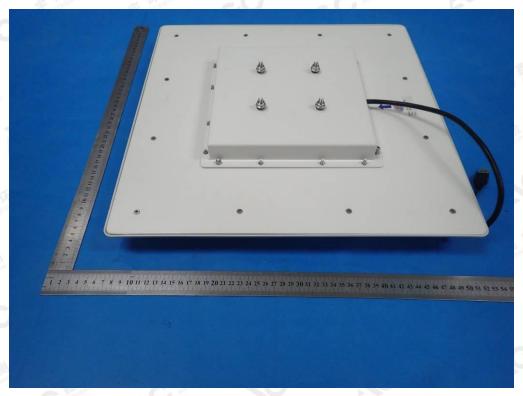



The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. IGC 8

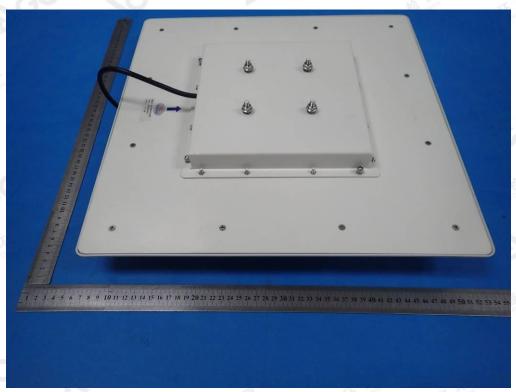


# FRONT VIEW OF EUT




**BACK VIEW OF EUT** 



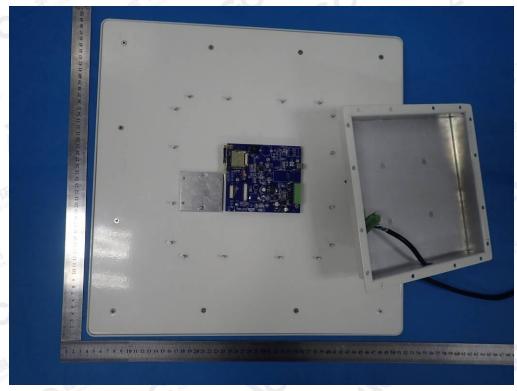

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. No.16 E AGC 8



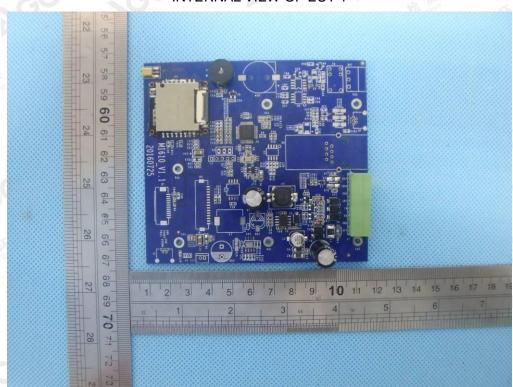
# LEFT VIEW OF EUT



**RIGHT VIEW OF EUT** 



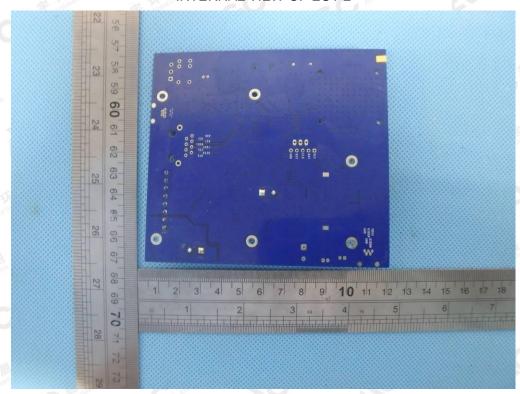

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ASC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. AGC 8


@ 400 089 2118

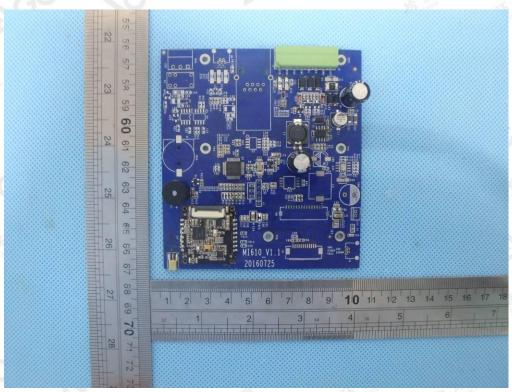


# **OPEN VIEW OF EUT**




INTERNAL VIEW OF EUT-1




The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. GC S



# **INTERNAL VIEW OF EUT-2**



**INTERNAL VIEW OF EUT-3** 



END OF REPORT----

The results shown this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by XQC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-cert.com. GC 8